Example: Running DplPy with Jupyter Notebook¶
This Jupyter Notebook must be run within the dplPy
directory. Refer to README.md
for instructions on how to run Jupyter Notebook and the required conda Environment
on your OS.
Import packages and load test data from the test
directory.
Note: choose your own example file from
/tests/data/<format>/<file.format>
. In this example, the test file isrwl/ca533.rwl
.
In [11]:
Copied!
# Import statements
# loading test example as data
# Find examples in `tests` folder
import os
directory = os.getcwd().split("/")
if directory[-1] != 'src':
os.chdir("./src")
import dplpy as dpl
data = dpl.readers("../tests/data/rwl/ca533.rwl")
# Import statements
# loading test example as data
# Find examples in `tests` folder
import os
directory = os.getcwd().split("/")
if directory[-1] != 'src':
os.chdir("./src")
import dplpy as dpl
data = dpl.readers("../tests/data/rwl/ca533.rwl")
Attempting to read input file: ca533.rwl as .rwl format SUCCESS! File read as: .rwl file Series names: ['CAM011', 'CAM021', 'CAM031', 'CAM032', 'CAM041', 'CAM042', 'CAM051', 'CAM061', 'CAM062', 'CAM071', 'CAM072', 'CAM081', 'CAM082', 'CAM091', 'CAM092', 'CAM101', 'CAM102', 'CAM111', 'CAM112', 'CAM121', 'CAM122', 'CAM131', 'CAM132', 'CAM141', 'CAM151', 'CAM152', 'CAM161', 'CAM162', 'CAM171', 'CAM172', 'CAM181', 'CAM191', 'CAM201', 'CAM211']
Summarize data using the summary
function.
In [12]:
Copied!
# Summarizes input data
dpl.summary(data)
# Summarizes input data
dpl.summary(data)
Out[12]:
CAM011 | CAM021 | CAM031 | CAM032 | CAM041 | CAM042 | CAM051 | CAM061 | CAM062 | CAM071 | ... | CAM151 | CAM152 | CAM161 | CAM162 | CAM171 | CAM172 | CAM181 | CAM191 | CAM201 | CAM211 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 454.000000 | 551.000000 | 628.000000 | 549.000000 | 301.000000 | 446.000000 | 737.000000 | 627.000000 | 459.000000 | 947.000000 | ... | 749.000000 | 229.000000 | 504.000000 | 1000.000000 | 758.000000 | 797.000000 | 781.000000 | 791.000000 | 593.000000 | 1343.000000 |
mean | 0.439581 | 0.424465 | 0.349156 | 0.293224 | 0.525648 | 0.439148 | 0.273012 | 0.462281 | 0.441939 | 0.249071 | ... | 0.445648 | 0.533799 | 0.339464 | 0.396710 | 0.450264 | 0.482296 | 0.282638 | 0.366271 | 0.473929 | 0.356813 |
std | 0.221801 | 0.185397 | 0.213666 | 0.162930 | 0.222568 | 0.347705 | 0.139691 | 0.201785 | 0.188389 | 0.109357 | ... | 0.272561 | 0.194947 | 0.148916 | 0.184057 | 0.209848 | 0.249002 | 0.148853 | 0.335788 | 0.180967 | 0.182086 |
min | 0.000000 | 0.050000 | 0.000000 | 0.000000 | 0.100000 | 0.070000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.060000 | 0.000000 | 0.000000 | 0.080000 | 0.080000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 0.290000 | 0.290000 | 0.180000 | 0.180000 | 0.350000 | 0.270000 | 0.180000 | 0.335000 | 0.330000 | 0.180000 | ... | 0.240000 | 0.410000 | 0.230000 | 0.260000 | 0.300000 | 0.310000 | 0.170000 | 0.170000 | 0.350000 | 0.220000 |
50% | 0.400000 | 0.400000 | 0.290000 | 0.260000 | 0.530000 | 0.360000 | 0.250000 | 0.470000 | 0.450000 | 0.250000 | ... | 0.390000 | 0.520000 | 0.330000 | 0.370000 | 0.400000 | 0.420000 | 0.250000 | 0.250000 | 0.470000 | 0.340000 |
75% | 0.540000 | 0.520000 | 0.510000 | 0.390000 | 0.680000 | 0.460000 | 0.330000 | 0.600000 | 0.580000 | 0.320000 | ... | 0.610000 | 0.660000 | 0.430000 | 0.510000 | 0.580000 | 0.590000 | 0.380000 | 0.455000 | 0.580000 | 0.470000 |
max | 1.360000 | 1.110000 | 1.030000 | 0.850000 | 1.380000 | 3.030000 | 1.320000 | 1.090000 | 0.920000 | 0.620000 | ... | 1.640000 | 1.250000 | 0.900000 | 1.040000 | 1.540000 | 1.980000 | 0.800000 | 2.540000 | 1.490000 | 1.100000 |
8 rows × 34 columns
Show general statistics of data
through the stats
function.
In [3]:
Copied!
# General statistics of input data
dpl.stats(data)
# General statistics of input data
dpl.stats(data)
Out[3]:
series | first | last | year | mean | median | stdev | skew | gini | ar1 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | CAM011 | 1530 | 1983 | 454 | 0.440 | 0.40 | 0.222 | 1.029 | 0.273 | 0.698 |
2 | CAM021 | 1433 | 1983 | 551 | 0.424 | 0.40 | 0.185 | 0.946 | 0.237 | 0.702 |
3 | CAM031 | 1356 | 1983 | 628 | 0.349 | 0.29 | 0.214 | 0.690 | 0.341 | 0.809 |
4 | CAM032 | 1435 | 1983 | 549 | 0.293 | 0.26 | 0.163 | 0.717 | 0.309 | 0.665 |
5 | CAM041 | 1683 | 1983 | 301 | 0.526 | 0.53 | 0.223 | 0.488 | 0.238 | 0.710 |
6 | CAM042 | 1538 | 1983 | 446 | 0.439 | 0.36 | 0.348 | 3.678 | 0.324 | 0.881 |
7 | CAM051 | 1247 | 1983 | 737 | 0.273 | 0.25 | 0.140 | 1.836 | 0.262 | 0.705 |
8 | CAM061 | 1357 | 1983 | 627 | 0.462 | 0.47 | 0.202 | -0.111 | 0.247 | 0.510 |
9 | CAM062 | 1525 | 1983 | 459 | 0.442 | 0.45 | 0.188 | -0.266 | 0.240 | 0.529 |
10 | CAM071 | 1037 | 1983 | 947 | 0.249 | 0.25 | 0.109 | 0.027 | 0.247 | 0.578 |
11 | CAM072 | 1114 | 1983 | 870 | 0.309 | 0.29 | 0.163 | 0.698 | 0.292 | 0.735 |
12 | CAM081 | 1081 | 1983 | 903 | 0.327 | 0.31 | 0.124 | 0.555 | 0.211 | 0.723 |
13 | CAM082 | 977 | 1983 | 1007 | 0.285 | 0.29 | 0.114 | 0.312 | 0.223 | 0.771 |
14 | CAM091 | 1460 | 1983 | 524 | 0.532 | 0.52 | 0.255 | 0.425 | 0.267 | 0.632 |
15 | CAM092 | 1591 | 1983 | 393 | 0.349 | 0.34 | 0.226 | 0.337 | 0.369 | 0.561 |
16 | CAM101 | 1727 | 1983 | 257 | 0.568 | 0.56 | 0.260 | 0.254 | 0.259 | 0.716 |
17 | CAM102 | 1665 | 1983 | 319 | 0.604 | 0.62 | 0.261 | 0.082 | 0.243 | 0.677 |
18 | CAM111 | 1446 | 1983 | 538 | 0.625 | 0.62 | 0.249 | 0.196 | 0.225 | 0.625 |
19 | CAM112 | 1471 | 1983 | 513 | 0.570 | 0.56 | 0.211 | 0.223 | 0.207 | 0.583 |
20 | CAM121 | 1000 | 1983 | 984 | 0.259 | 0.26 | 0.106 | 0.042 | 0.231 | 0.594 |
21 | CAM122 | 1000 | 1983 | 984 | 0.271 | 0.27 | 0.109 | 0.346 | 0.223 | 0.653 |
22 | CAM131 | 695 | 1970 | 1276 | 0.552 | 0.53 | 0.198 | 0.330 | 0.202 | 0.788 |
23 | CAM132 | 710 | 1232 | 523 | 0.397 | 0.38 | 0.148 | 0.871 | 0.203 | 0.810 |
24 | CAM141 | 1030 | 1970 | 941 | 0.627 | 0.60 | 0.204 | 0.695 | 0.177 | 0.746 |
25 | CAM151 | 1222 | 1970 | 749 | 0.446 | 0.39 | 0.273 | 1.068 | 0.332 | 0.765 |
26 | CAM152 | 1221 | 1449 | 229 | 0.534 | 0.52 | 0.195 | 0.297 | 0.203 | 0.695 |
27 | CAM161 | 1106 | 1609 | 504 | 0.339 | 0.33 | 0.149 | 0.633 | 0.243 | 0.794 |
28 | CAM162 | 971 | 1970 | 1000 | 0.397 | 0.37 | 0.184 | 0.647 | 0.259 | 0.840 |
29 | CAM171 | 1213 | 1970 | 758 | 0.450 | 0.40 | 0.210 | 1.250 | 0.250 | 0.799 |
30 | CAM172 | 1174 | 1970 | 797 | 0.482 | 0.42 | 0.249 | 1.622 | 0.268 | 0.847 |
31 | CAM181 | 1190 | 1970 | 781 | 0.283 | 0.25 | 0.149 | 0.706 | 0.293 | 0.805 |
32 | CAM191 | 1180 | 1970 | 791 | 0.366 | 0.25 | 0.336 | 2.359 | 0.429 | 0.876 |
33 | CAM201 | 990 | 1582 | 593 | 0.474 | 0.47 | 0.181 | 0.772 | 0.208 | 0.709 |
34 | CAM211 | 626 | 1968 | 1343 | 0.357 | 0.34 | 0.182 | 0.513 | 0.286 | 0.683 |
In [6]:
Copied!
# Detrends a series by fitting to spline and calculating residuals.
# !!! Note: spline is the current detrent default method;
# !!! Note: Line graph is defaulted to show residuals.
#
# Detrend funtion can modified to fit Hugershoff, modified negative exponential, linear, horizonal.
# This option will be available in the short term future.
#
# The detrend function accepts a specific series as input in the following format:
dpl.detrend(data["CAM191"])
# Detrends a series by fitting to spline and calculating residuals.
# !!! Note: spline is the current detrent default method;
# !!! Note: Line graph is defaulted to show residuals.
#
# Detrend funtion can modified to fit Hugershoff, modified negative exponential, linear, horizonal.
# This option will be available in the short term future.
#
# The detrend function accepts a specific series as input in the following format:
dpl.detrend(data["CAM191"])
In [9]:
Copied!
# Returns parameters
# As default max lag is set to 5;
# add second parameter (integer) to change max lag.
dpl.autoreg(data["CAM191"], 10)
# Returns parameters
# As default max lag is set to 5;
# add second parameter (integer) to change max lag.
dpl.autoreg(data["CAM191"], 10)
/Users/michelecosi/miniconda3/envs/dplpy4/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: An unsupported index was provided and will be ignored when e.g. forecasting. self._init_dates(dates, freq) /Users/michelecosi/miniconda3/envs/dplpy4/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: An unsupported index was provided and will be ignored when e.g. forecasting. self._init_dates(dates, freq)
Out[9]:
const 0.022210 CAM191.L1 0.503373 CAM191.L2 0.087230 CAM191.L3 0.143716 CAM191.L4 0.020119 CAM191.L5 -0.027769 CAM191.L6 -0.010029 CAM191.L7 0.001373 CAM191.L8 0.025588 CAM191.L9 0.042340 CAM191.L10 0.136916 dtype: float64
In [10]:
Copied!
# Returns residuals+mean after
# choosing best AR model fit with chosen max lag (default=5).
dpl.ar_func(data["CAM191"])
# Returns residuals+mean after
# choosing best AR model fit with chosen max lag (default=5).
dpl.ar_func(data["CAM191"])
/Users/michelecosi/miniconda3/envs/dplpy4/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: An unsupported index was provided and will be ignored when e.g. forecasting. self._init_dates(dates, freq) /Users/michelecosi/miniconda3/envs/dplpy4/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: An unsupported index was provided and will be ignored when e.g. forecasting. self._init_dates(dates, freq)
Out[10]:
array([-0.23485391, 0.61703427, 0.07848781, 0.30139532, 0.31970781, 0.7709527 , -0.13122202, 0.73735556, 0.79259251, 1.03150292, 0.19654108, -0.13481225, 0.61573077, 0.65068195, 0.43323283, 0.95951473, -0.37325966, 0.50079401, -0.10560507, 0.05038 , 0.56974055, 0.3394715 , 0.51772866, 0.28269221, 0.42226138, 0.63341811, 1.4739965 , 0.28602606, 0.2604808 , 0.27934854, -0.34367123, 0.33895547, 0.19844979, -0.07263543, 0.45164677, 0.85279497, 1.01238366, 0.74549344, 0.51996229, 0.77010877, 0.46936605, 0.0785818 , 0.09314398, 0.47463727, 0.83439219, 0.03987213, 0.81898116, 0.58663827, 0.30382456, 0.43938001, 0.53303445, 0.23979872, 0.42268213, 0.6094634 , 0.44863191, 0.52719227, 0.14005905, 0.32252156, 0.14725286, 0.29913277, 0.61191963, 0.44957831, 0.42429965, 0.5959667 , 0.49178689, 0.45410314, 0.25085001, 0.42356281, 0.55757744, -0.24367237, 0.15117969, 0.66712127, 0.69258454, -0.12784539, 0.6789434 , 0.60783217, 0.61407111, 0.62246195, 0.41272014, -0.00936233, -0.0480617 , 0.0694901 , 0.33897886, 0.36166267, 0.30446064, 0.48141051, 0.56882759, 0.64385542, 0.30465005, 0.51569189, 0.79791196, 0.39735395, 0.31585581, 0.15895399, 0.58666957, 0.40978068, 0.15985022, 0.40607871, 0.40388826, 0.3096272 , 0.0342205 , 0.55427596, 0.52377703, 0.26738502, 0.53938707, 0.33790184, 0.5382865 , 0.41514302, 0.35265856, 0.30646022, 0.50990241, 0.4243464 , 0.34850027, 0.18307126, 0.2732797 , 0.51736136, 0.54959262, 0.45413807, 0.29612966, 0.45052545, 0.46909323, 0.36982143, 0.39153275, 0.64037135, 0.27772417, 0.31826222, 0.52523135, 0.51617064, 0.45047841, 0.49865942, 0.45413743, 0.05947446, 0.28437018, 0.38299106, 0.22614538, 0.36022031, 0.50037608, 0.66379821, -0.08412939, 0.80206774, 0.55463454, 0.65119228, 0.55409197, 0.41811455, 0.18790989, 0.31775581, 0.42356545, -0.11198417, 0.61155616, -0.00400045, 0.42381569, 0.16696088, 0.42339441, 0.27222434, 0.34009664, 0.37453456, 0.47170985, 0.40264874, 0.51659048, 0.36462353, 0.38726786, 0.41915095, 0.43958695, 0.2692216 , 0.4572227 , 0.37663572, 0.37516709, 0.51114637, 0.51301848, 0.20921054, 0.38756127, 0.50750609, 0.34038451, 0.22999705, 0.41815438, 0.1613977 , 0.09181197, 0.28494723, 0.39606824, 0.51561671, 0.36811293, 0.35614156, 0.56900867, 0.40354229, 0.61000538, 0.42411197, 0.19417072, 0.45693544, 0.59061735, 0.46628091, 0.42696804, 0.4041577 , 0.08013931, 0.43943249, 0.14019481, 0.48190889, 0.58643436, 0.55826101, 0.5105765 , 0.48199429, 0.54310525, 0.27927251, 0.30634321, 0.32827562, 0.52612092, 0.35138125, 0.31463398, 0.54032327, 0.32644925, 0.52935574, 0.37253887, 0.31671287, 0.25945758, 0.24138538, 0.29070475, 0.48241831, 0.07597918, 0.5339914 , 0.43070055, 0.38209941, 0.54220723, 0.41888816, 0.13905795, 0.37808339, 0.5182685 , 0.33383431, 0.43731525, 0.49870236, 0.39623926, 0.20947203, 0.43548597, 0.33406516, 0.61692086, 0.20888847, 0.43691344, 0.40875671, 0.28687993, 0.33627451, 0.45303114, 0.39374527, 0.30778941, 0.28913639, 0.52006099, 0.29244499, 0.50501874, 0.30752383, 0.23357822, 0.51230839, 0.49609901, 0.03676054, 0.66377245, 0.46695285, 0.28583492, 0.24910179, 0.38565254, 0.51333396, 0.34451973, 0.30623028, 0.28624853, 0.2484529 , 0.30577825, 0.23987747, 0.33826147, 0.21603312, 0.39775025, 0.24295094, 0.37695061, 0.35095463, 0.42067853, 0.29581275, 0.43572216, 0.26531939, 0.30630855, 0.30089194, 0.3770091 , 0.29272387, 0.4289114 , 0.35323252, 0.37325316, 0.33271626, 0.35549783, 0.39572473, 0.35150282, 0.37620792, 0.35962842, 0.37867256, 0.31254057, 0.30823814, 0.33498754, 0.30991824, 0.22106116, 0.47600479, 0.36901305, 0.35061435, 0.34308667, 0.40811558, 0.42101334, 0.30019725, 0.38620366, 0.35702432, 0.38213919, 0.46361132, 0.32010587, 0.35373268, 0.32502378, 0.44608853, 0.38144384, 0.32546815, 0.47334522, 0.447194 , 0.2980056 , 0.23089079, 0.10410034, 0.34967115, 0.45274025, 0.25222561, 0.49008612, 0.40675568, 0.41047231, 0.29493453, 0.32821789, 0.28024849, 0.35079935, 0.37324237, 0.3868993 , 0.37054072, 0.39523113, 0.44287362, 0.31951994, 0.3604808 , 0.25996029, 0.48716987, 0.3405697 , 0.36588728, 0.36170745, 0.47566618, 0.36956056, 0.12281409, 0.17040604, 0.43080876, 0.45339988, 0.38657195, 0.51062833, 0.24663067, 0.2944111 , 0.42325223, 0.30723836, 0.39412815, 0.11526089, 0.45728477, 0.49026851, 0.44408903, 0.52517481, 0.30415652, 0.44375 , 0.36124269, 0.10234557, 0.14085553, 0.38944291, 0.33393161, 0.24747679, 0.38142452, 0.41099257, 0.42110084, 0.33544361, 0.42189318, 0.31541684, 0.45510977, 0.34895568, 0.37032153, 0.394427 , 0.27837366, 0.4047497 , 0.10612834, 0.4954011 , 0.37753079, 0.46006873, 0.25295007, 0.44859502, 0.36381464, 0.20880894, 0.48459165, 0.43634343, 0.27762589, 0.42387602, 0.25771294, 0.14473909, 0.32079832, 0.31786878, 0.4091164 , 0.38066256, 0.35516329, 0.33930981, 0.21244847, 0.29353493, 0.32229358, 0.49335149, 0.34781998, 0.46855312, 0.32200119, 0.34367487, 0.36297008, 0.36864722, 0.35925875, 0.31742445, 0.26701958, 0.3770456 , 0.29160236, 0.39071092, 0.46679997, 0.31216462, 0.44482003, 0.38258064, 0.45239854, 0.36552033, 0.21686622, 0.37011469, 0.20408543, 0.4766801 , 0.37603546, 0.40307278, 0.26970016, 0.18577225, 0.5308118 , 0.41354986, 0.35416121, 0.30267815, 0.2431837 , 0.38263567, 0.43256545, 0.28026539, 0.47917932, 0.36702031, 0.12126338, 0.41128376, 0.36910108, 0.32816472, 0.39654297, 0.2728162 , 0.39017996, 0.41235812, 0.32996245, 0.3658953 , 0.39350694, 0.41380087, 0.33389311, 0.28319668, 0.28699192, 0.38468972, 0.45064504, 0.43507548, 0.34339383, 0.38741558, 0.29479123, 0.38417023, 0.42920096, 0.21992131, 0.35415206, 0.41429713, 0.28045376, 0.34746292, 0.3414929 , 0.30219699, 0.39595103, 0.36762076, 0.35817275, 0.43388609, 0.34128867, 0.29889916, 0.25351852, 0.20326752, 0.42197456, 0.47608529, 0.42410472, 0.38622311, 0.43329866, 0.38954634, 0.26966697, 0.31011112, 0.41435408, 0.3312214 , 0.30561928, 0.34896042, 0.14830434, 0.47081585, 0.16646207, 0.41601987, 0.37207901, 0.42193349, 0.25398928, 0.24741244, 0.33292854, 0.27909425, 0.44545975, 0.36996414, 0.40320527, 0.23548363, 0.46307916, 0.35668605, 0.37330783, 0.37192971, 0.29535696, 0.41388927, 0.34920842, 0.35240151, 0.17638227, 0.46377493, 0.3939198 , 0.46448029, 0.34974532, 0.4091069 , 0.2996696 , 0.31868948, 0.27776093, 0.27969009, 0.31001004, 0.34651993, 0.36511498, 0.25641987, 0.36787472, 0.25061601, 0.43874015, 0.30907333, 0.30742187, 0.43356778, 0.37184625, 0.37781472, 0.38811771, 0.36018255, 0.32513911, 0.41765669, 0.32689887, 0.28030158, 0.39163757, 0.33158315, 0.3595052 , 0.46889063, 0.32822815, 0.32566163, 0.33101464, 0.37216688, 0.39733423, 0.44800362, 0.40265194, 0.36828679, 0.3945686 , 0.25542368, 0.35761989, 0.23298255, 0.35897608, 0.38835324, 0.35940801, 0.33920676, 0.38774871, 0.35665835, 0.40969949, 0.37855848, 0.26505381, 0.3750314 , 0.3614608 , 0.29583819, 0.387177 , 0.45308406, 0.35631867, 0.3471497 , 0.31944481, 0.40949886, 0.32453882, 0.27349772, 0.31247103, 0.28736743, 0.33053127, 0.28445865, 0.42163137, 0.39165334, 0.48125848, 0.39958453, 0.36121433, 0.25596448, 0.35028976, 0.37800471, 0.29054553, 0.39901677, 0.28566321, 0.40228394, 0.28094665, 0.38282782, 0.32080927, 0.36732028, 0.28021801, 0.43386441, 0.36566424, 0.17309174, 0.2864465 , 0.48588328, 0.4379513 , 0.31807606, 0.22276896, 0.3837975 , 0.35437269, 0.41095687, 0.35536757, 0.36256703, 0.41053693, 0.19875665, 0.35931273, 0.34938392, 0.35938082, 0.29932014, 0.36026023, 0.29420832, 0.41583381, 0.41836997, 0.35236038, 0.36478763, 0.37422349, 0.42237656, 0.35491203, 0.38401865, 0.32478055, 0.39639871, 0.30754248, 0.28298515, 0.35355333, 0.38764711, 0.24149446, 0.44736186, 0.26846159, 0.30305692, 0.37937295, 0.35399136, 0.37436065, 0.48975852, 0.32763145, 0.35771297, 0.24457454, 0.43817467, 0.32318189, 0.40939673, 0.30904956, 0.4058264 , 0.31548055, 0.34778588, 0.27216749, 0.35959523, 0.35308367, 0.39804884, 0.31123224, 0.37074699, 0.31098905, 0.32787846, 0.22225314, 0.36189398, 0.38569857, 0.40244394, 0.37431475, 0.37646296, 0.30050867, 0.38853535, 0.26827023, 0.30120785, 0.3924199 , 0.31654751, 0.39963708, 0.35394093, 0.37008765, 0.34325678, 0.46986591, 0.37089893, 0.37767187, 0.38052207, 0.21070825, 0.26081478, 0.26066993, 0.43560227, 0.47730778, 0.26494492, 0.44390498, 0.31396022, 0.46117816, 0.22760724, 0.45842222, 0.33492516, 0.46903585, 0.32518185, 0.41382035, 0.33071743, 0.32781117, 0.42697473, 0.29922905, 0.39353705, 0.34316083, 0.45248865, 0.31556241, 0.29688595, 0.19042043, 0.30801811, 0.43209191, 0.38171683, 0.36874542, 0.33110284, 0.43408485, 0.35350848, 0.41717183, 0.3795025 , 0.33800292, 0.40788355, 0.3487189 , 0.36334129, 0.36773897, 0.35716652, 0.31958933, 0.35229354, 0.38192844, 0.131064 , 0.46945613, 0.50452416, 0.40170409, 0.33910162, 0.2446623 , 0.47178829, 0.35272988, 0.47105281, 0.32434132, 0.29563633, 0.3489984 , 0.4313384 , 0.26458517, 0.28972957, 0.37328946, 0.3513375 , 0.4182225 , 0.40488257, 0.35984623, 0.35157567, 0.36490789, 0.36145163, 0.36219304, 0.31249589, 0.31993087, 0.34506224, 0.33977483, 0.43941594, 0.34300712, 0.11407017, 0.55013731, 0.36031895, 0.35651344, 0.3536409 , 0.39214983, 0.35685251, 0.32191647, 0.42147809, 0.28167082, 0.39399796, 0.38954763, 0.29320292, 0.28894349, 0.367458 , 0.33458904, 0.38906359, 0.41711617, 0.46963755, 0.23272096, 0.29462233, 0.39546486, 0.4524549 , 0.31592476, 0.45280139, 0.33135251, 0.36175169, 0.36998016, 0.35009763, 0.34600311, 0.40323174, 0.22948486, 0.29787165, 0.47074459, 0.44792308, 0.43539402, 0.40254804, 0.2987047 , 0.374543 , 0.37842883, 0.40753657, 0.34595611])
Last update:
2024-01-09